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Linear Convergence Rate of a Class of Distributed
Augmented Lagrangian Algorithms
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Abstract—We study distributed optimization where nodes co-
operatively minimize the sum of their individual, locally known,
convex costs fi(x)’s; x ∈ R

d is global. Distributed augmented
Lagrangian (AL) methods have good empirical performance on
several signal processing and learning applications, but there is
limited understanding of their convergence rates and how it de-
pends on the underlying network. This paper establishes globally
linear (geometric) convergence rates of a class of determinis-
tic and randomized distributed AL methods, when the fi’s are
twice continuously differentiable and have a bounded Hessian. We
give explicit dependence of the convergence rates on the under-
lying network parameters. Simulations illustrate our analytical
findings.

Index Terms—Augmented Lagrangian, consensus, convergence
rate, distributed optimization.

I. INTRODUCTION

A. Motivation

W E study distributed optimization over a N -node, con-
nected, undirected network G = (V, E), with V the set

of nodes and E the set of edges. Node i has private cost
function fi(x), fi : Rd → R. We focus on iterative, distributed
algorithms that solve the unconstrained problem

minimize f(x) :=
N∑
i=1

fi(x) (1)

while each node i communicates only with its neighbors. This
is the setup in many applications, e.g., distributed inference, [1],
or distributed source localization, [2], in sensor networks.

A popular approach to solve (1), e.g., [3]–[7], is through
the augmented Lagrangian (AL) dual. The approach assigns
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a local copy xi ∈ R
d of the global variable x in (1) to

each node i, introduces the edge-wise constraints
√

Wij(xi −
xj) = 0, ∀{i, j} ∈ E (Wij a positive weight),1 and forms an
AL dual function by dualizing these constraints and adding
the quadratic penalty (ρ/2)

∑
{i,j}∈E,i≤j Wij‖xi − xj‖2, see,

e.g., [8], Section V, for details.2 Denote by λ{i,j} ∈ R
d the

dual variable that corresponds to the constraint on the edge
{i, j}. Introducing the per-node aggregate dual variables μi :=∑

j∈Oi

√
Wijλ{i,j}sign(j − i) (sign(0) := 1), where Oi is the

node i’s neighborhood (including i), one obtains the following
dual method to solve (1):

(x1(k + 1), · · · , xN (k + 1)) =
argmin(x1,···,xN )∈RdN La (x1, · · · , xN ;μ1(k), · · · , μN (k))

(2)
μi(k + 1) = μi(k) + α

∑
j∈Oi

Wij (xi(k + 1)− xj(k + 1))

(3)

where α > 0 is the (dual) step-size, and La : RdN × R
dN →

R, is the function

La(x1, · · · , xN ;μ1, · · · , μN ) =
N∑
i=1

fi(xi)

+

N∑
i=1

μ�
i xi +

ρ

2

∑
{i,j}∈E,i≤j

Wij‖xi − xj‖2. (4)

In (2) and (3), xi(k) and μi(k) are the node i’s primal and dual
variables, respectively. Dual updates (3) allow for distributed
implementation, as each node i needs only the primal variables
xj(k + 1) from its immediate neighbors in the network. When
ρ = 0, the primal update (2) decouples as well, and node i
solves for xi(k + 1) locally (without inter-neighbor communi-
cations.) When ρ > 0, the quadratic coupling term in (4) (in
general) induces the need for inter-node communications to
iteratively solve (2). Many known methods to solve (1) fall into
the framework of (2), (3); see, e.g., [4]–[9]. These methods are
used in various signal processing and learning applications, but,
until recently, their convergence rates have not been analyzed.

B. Contributions

In this paper, we introduce an analytical framework to study
the convergence rates of distributed AL methods of type (2), (3)

1We include also self-edges, i.e., {i, i} ∈ E, ∀i.
2Here, ρ ≥ 0 is the penalty parameter and Wij are the weights, collected

in the N ×N symmetric matrix W , where Wij > 0 if {i, j} ∈ E, i �= j,
Wij = 0 if {i, j} /∈ E, i �= j, and Wii := 1−

∑
j �=i

Wij , and W is doubly
stochastic.

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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when problems (2) are solved inexactly. While the AL methods
that we consider are variations on the existing methods, our
analysis gives new results on the globally linear convergence
rates of distributed AL algorithms and brings several impor-
tant insights into the performance of distributed multi-agent
optimization.

We now explain our technical results. Let x′(k + 1) =

(x′
1(k + 1)�, . . . , x′

N (k + 1)�)
�

be the solution to (2) when
the dual variables are fixed to μ(k) = (μ�

1 (k), . . . , μ
�
N (k))�.

Our framework handles any arbitrary iterative method that
solves (2), where the method’s initial guess of x′(k + 1) (start-
ing point) at iteration k is set to x(k). Further, let ‖x(k + 1)−
x′(k + 1)‖ ≤ ξ‖x(k)− x′(k + 1)‖, ∀k, ξ ∈ (0, 1), i.e., prob-
lem (2) is solved up to a certain accuracy such that the distance
to the solution (in terms of Euclidean norm) is reduced ξ
times with respect to the starting point x(k). Assuming that the
cost functions fi’s are twice continuously differentiable, with
bounded Hessian (hminI 	 ∇2fi(x) 	 hmaxI , ∀i, ∀x ∈ R

d,
hmin > 0), we give explicit conditions that relate the quantities
ξ, hmin, and hmax, and the network’s spectral gap λ2 = λ2(L),3
such that the distributed AL method converges to the solution
of (1) at a globally linear rate. Furthermore, we explicitly
characterize the achieved rate in terms of the above system
parameters.

We apply and specialize our results to four iterative dis-
tributed AL methods that solve (1) that mutually differ in how
(2) is solved. We refer to the four methods as: 1) deterministic
Jacobi-type; 2) deterministic gradient; 3) randomized Gauss-
Seidel-type; and 4) randomized gradient-type (see Section II for
the algorithms’ details.) We establish with all methods globally
linear convergence rates in terms of the total number of per-
node communications, and we explicitly characterize the rates
in terms of the system parameters. Furthermore, with determin-
istic and randomized gradient variants, we establish the globally
linear convergence rates in terms of the total number of per-
node evaluations of gradients of the fi’s.

We now highlight several key contributions and implications
of our results that distinguish our work from the existing
literature on distributed multi-agent optimization.

1) We give a general framework to analyze distributed AL
algorithms, and we establish linear convergence rates for
a wide class of distributed AL methods. This contrasts
with the existing work that typically studies a specific dis-
tributed method, like the distributed ADMM [10], [11].
In particular, this allows us to establish for the first time
linear convergence rates of the distributed AL methods
with randomized primal variable updates. We remark that,
for certain specific methods, like the distributed ADMM,
the literature gives tighter bounds than we do, as we
explain below.

2) To our best knowledge, our results on deterministic and
randomized gradient variants are the first that establish
globally linear convergence rates for any distributed algo-
rithm that solves (1), simultaneously in terms of per-node
gradient evaluations and per-node communications.

3The spectral gap λ2(L) is the second smallest eigenvalue of the weighted
Laplacian matrix L := I −W .

3) We provide distributed methods (deterministic and ran-
domized gradient variants) that involve only simple cal-
culations (like the gradient-type methods in, e.g., [12])
but achieve significantly faster rates than [12]. That is,
we show that through the AL mechanism much faster
rates can be obtained compared with respect to stan-
dard distributed gradient methods [12], while maintain-
ing the same communication cost and similar computa-
tional cost per inner iteration, and requiring additional
knowledge on the system parameters. Namely, [13] (see
also [14] for similar results) studies the method in [12]
when the costs fi’s are strongly convex and have Lip-
schitz continuous gradients–the setup very similar to
ours (We additionally require twice continuously dif-
ferentiable costs.) Assuming that nodes know hmax, it
shows that the distance to the solution after k iterations
is O((1− αc2)

k/2 + (αhmax/λ2)), where α is the step-
size and c2 = hmaxhmin/(hmax + hmin). From these re-
sults, it follows that, to achieve ε-accuracy, we need
O(γ log(1/ε)/ελ2) per-node communications and per-
node gradient evaluations, where γ = hmax/hmin is the
condition number. In contrast, we assume with our de-
terministic gradient that nodes know λ2, hmin, and hmax,
and we show that (ignoring terms logarithmic in N , λ2,
and γ) the ε-accuracy is achieved in O(γ log(1/ε)/λ2)
per-node communications and per-node gradient evalua-
tions.

C. Related Work

We now further relate our work with the existing literature.
We first consider the literature on distributed multi-agent opti-
mization, and then we consider the work on the conventional,
centralized optimization.

Distributed multi-agent optimization: Many relevant works
on this and related subjects have recently appeared. Reference
[15] considers (1) over generic networks as we do, under a
wide class of generic convex functions. The reference shows
O(1/K) rate of convergence in the number of per-node com-
munications for a distributed ADMM method. It is important
to note that, differently from our paper, [15] considers generic
costs for which even in a centralized setting linear rates are not
achievable. Reference [16] considers both resource allocation
problems and (1) and develops accelerated dual gradient meth-
ods which are different than our methods. It gives the methods’
convergence factors as 1− Ω(

√
λmin(AA�)/γλmax(AA�)),

where A is the edge-node incidence matrix and λmin(·) and
λmax(·) denote the minimal non-zero and maximal eigenvalues,
respectively.4 The rates in [16] are better than the rates that we
establish for our methods. Reference [16] assumes that each
node exactly solves certain local optimization problems and
is not concerned with establishing the rates in terms of the
number of gradient evaluations ([16] corresponds to exact dual
methods.) Another difference is that the methods in [16] are
based on the ordinary dual—not AL dual.

4For two positive sequences ηn and χn, ηn = Ω(χn) means that
lim infn→∞(ηn/χn) > 0.
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Reference [17] analyzes distributed ADMM for the consen-
sus problem—the special case when fi : R → R is fi(x) =
(x− ai)

2, ai ∈ R. It establishes the global convergence factor
1− Ω(

√
λ2(L)). When we specialize our result to the problem

studied in [17], their convergence factor bound is tighter than
ours. Finally, references [10], [11] analyze a distributed ADMM
method therein when the costs are strongly convex and have
Lipschitz continuous gradients. The method in [10], [11] cor-
responds to our deterministic Jacobi-type variant when τ = 1.
With respect to our results, the bounds in [10], [11] are tighter
than ours for the method they study.

References [18]–[21] study distributed primal-dual methods
that resemble ours when the number of inner iterations τ is set
to one (but their methods are not the same.) These works do not
analyze the convergence rates of their algorithms.

Centralized optimization: Our work is also related to studies
of the AL and related algorithms in conventional, centralized
optimization. There is a vast literature on the subject, and many
authors considered inexact primal minimizations (see [22]–[24]
and the references listed in the following paragraphs.) Before
detailing the existing work, we point to main differences of this
paper with respect to usual studies in the literature. First, when
analyzing inexact AL methods, the literature usually assumes
that the primal problems use arbitrary initialization. In contrast,
we initialize the inner primal algorithm with the previous
primal variable. Consequently, our results and the results in the
literature are different, the algorithms in the literature typically
being convergent only to a solution neighborhood, e.g. [22],
[23]. Second, except for recent papers, e.g., [22], [23], the
analysis of inexact AL is usually done with respect to dual
sub-optimality. In contrast, we are interested in the primal
sub-optimality measures. Third, convergence rates are usually
established at the outer iteration level, while we—besides the
outer iterations level—establish the rates in the number of inner
iterations.

In summary, we establish primal sub-optimality globally lin-
ear convergence rates in the number of inner iterations (overall
number of iterations) for our AL methods.

We now detail the literature and divide it into four classes:
1) ADMM algorithms; 2) AL algorithms; 3) saddle point al-

gorithms; and 4) Jacobi/Gauss-Seidel algorithms. We also point
to several interesting connections among different methods.

ADMM algorithms: The ADMM method has been proposed
in the 70s [25], [26] and has been since then extensively
studied. References [27]–[29] show locally linear or superlinear
convergence rates of AL methods. Reference [24] analyzes con-
vergence of the ADMM method using the theory of maximal
set monotone operators, and it studies its convergence under
inexact primal minimizations. Recently, [30], [31] show that the
ADMM method converges globally linearly, for certain more
general convex costs than ours. (The most related work to ours
on ADMM is actually the work on distributed ADMM in [10],
[11] that we have already commented on above.)

AL algorithms: Lagrangian duality is classical and a power-
ful machinery in optimization; see, e.g., [32], for general theory,
and, e.g., [33], for applications in combinatorial optimization
and unit-commitment problems. The method of multipliers
based on the augmented Lagrangian has been proposed in the

late 1960s [34], [35]. The convergence of the algorithm has
been extensively studied, also under inexact primal minimiza-
tions. References [27]–[29] show locally linear or superlinear
convergence rates of AL methods. The work [22] analyzes
the inexact AL method when the primal and dual variables
are updated using inexact fast gradient schemes. This paper
finds the total number of inner iterations needed to achieve
an ε-accurate primal solution. Reference [23] studies AL dual
standard and fast gradient methods when the primal problems
are solved inexactly, up to a certain accuracy εin. The reference
finds the number of outer iterations and the required accuracy
εin to obtain an εout-suboptimal primal solution.

Saddle Point algorithms: This thread of the literature con-
siders iterative algorithms to solve saddle point problems. We
divide the saddle point algorithms into two types. The first
type of algorithms performs at each iteration only one gradient
step with respect to the primal variables. The second type of
algorithms solves at each iteration an optimization problem,
like it is done with the AL method in (2). We now consider
the first type of methods. A classical method dates back to
the 50s [36]. Our distributed gradient AL, when the number
of inner iterations is set to τ = 1, is similar to this algorithm.
Reference [36] analyzes stability of the method in continuous
time, while [37], [38] analyzes the method’s convergence under
diminishing step-sizes. Different versions of the method are
considered and analyzed in [39]. More recently, reference [40]
studies similar algorithms for a wide class of non-differentiable
(in general) cost functions and gives sub-linear rates to a
neighborhood of a saddle point (The sub-linear rate is due to
the wide function class assumed). In summary, although one of
our algorithms generally falls into the framework of this class
of methods, we could not find results in the literature that are
equivalent to ours.

We now focus on the second type of methods. The classical
method is the Arrow-Hurwitz-Uzawa method (also known as
Uzawa method), see, e.g., [41]. The algorithm has been thor-
oughly analyzed and several modifications have been proposed,
e.g., [41]–[45]. In fact, our inexact distributed AL method
is (an inexact version of) the Arrow-Hurwitz-Uzawa method,
applied to a specific saddle point system (see ahead (19)–(21).)
This in particular means that the AL algorithm on the dual
of (1), given by (2), (3), is analogous to the Arrow-Hurwitz-
Uzawa method on a specific saddle point problem (19)–(21).
Reference [43] analyzes an exact method therein and estab-
lishes its convergence rates. References [42], [45] analyze the
inexact methods therein for linear saddle point problems (which
corresponds to quadratic cost functions), while references [41],
[44] analyze inexact methods therein for non-linear saddle point
problems (which corresponds to more general cost functions.)
Our analysis is in spirit closest to this thread of works. Although
(19)–(21) is similar to the classical setup, we could not find in
the literature results equivalent to ours.

Jacobi/Gauss-Seidel algorithms: Our work is also related
to studies of Jacobi/Gauss-Seidel algorithms, in the follow-
ing sense. Certain distributed AL methods that we consider
solve the inner problems (2) via iterative Gauss-Seidel/Jacobi
algorithms. In other words, we employ Jacobi/Gauss-Seidel
methods at the inner iteration level. Jacobi and Gauss-Seidel
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methods have been studied for a long time, e.g., [46]–[53]. The
methods have been studied both in the synchronous updates
setting, e.g., [46], [48], and in the asynchronous updates setting,
e.g., [47]–[53], in more general setups than the setup that we
consider. Reference [46] presents, e.g., global convergence for
Jacobi and Gauss-Seidel methods (with cyclic order of variable
updates) for solving nonlinear systems F (x) = 0, F : RN �→
R

N , where F (x) = Ax+ φ(x), A is an M-matrix and φ is a
diagonal, isotone mapping (see Theorems 13.1.3. and 13.1.5 in
[46]). The cyclic Jacobi and Gauss-Seidel methods are known
to converge at globally linear rates, when the gradient of the
map F is a diagonally dominant (positive definite) matrix;
see [48, Proposition 2.6]. Reference [47] studies asynchronous
multi-node5 iterative methods including Gauss-Seidel and
Jacobi, in the presence of bounded inter-node communication
delays. It uses Lyapunov theory to establish global and local
convergence (stability) of asynchronous iterative methods un-
der various conditions. For example, it is shown there that an
asynchronous iterative scheme converges if the local nodes’
update maps are block Lipschitz continuous, and if the cor-
responding matrix of Lipschitz constants is Schur-stable; see
Theorem 4.4.4 in [47], other results in Chapter 4, and references
therein. In contrast with the above existing results, convergence
of Jacobi/Gauss-Seidel algorithms in general settings is not
our main concern; instead, we are interested in the overall AL
algorithm with Jacobi/Gauss-Seidel type inner algorithms. In
contradistinction with the literature, we consider certain Gauss-
Seidel and Jacobi-type methods for the special case of mini-
mizing (4); exploiting this special structure, we derive explicit
convergence factors of the updates. This allows us to explicitly
determine the required number of inner (Jacobi/Gauss-Seidel-
type) iterations τ that ensure linear convergence of the overall
AL distributed schemes (See Theorem 1 and Lemmas 5-8 for
details).

Paper organization: Section II details our network and
optimization models and presents distributed AL methods.
Section III presents our analytical framework for the analy-
sis of inexact AL and proves the generic result on its con-
vergence rate. Section IV specializes this result for the four
considered distributed methods. Section V provides simulations
with l2-regularized logistic losses. Finally, we conclude in
Section VI.

Notation: Denote by: Rd the d-dimensional real space; al
the l-th entry of vector a; Alm or [A]lm the (l,m) entry of A;
A� the transpose of A; ⊗ the Kronecker product of matrices;
I , 0, 1, and ei, respectively, the identity matrix, the zero matrix,
the column vector with unit entries, and the i-th column of I; J
the N ×N ideal consensus matrix J := (1/N)1 1�; ‖ · ‖l the
vector (respectively, matrix) l-norm of its vector (respectively,
matrix) argument; ‖ · ‖ = ‖ · ‖2 the Euclidean (respectively,
spectral) norm of its vector (respectively, matrix) argument;
λi(·) the i-th smallest eigenvalue; A  0 means A is positive
definite; diag(a) the diagonal matrix with the diagonal equal to
vector a; �a� the smallest integer greater than or equal scalar a;
∇φ(x) and ∇2φ(x) the gradient and Hessian at x of a twice

5Reference [47] assumes all-to-all inter-node communications subject to
bounded delays.

differentiable function φ : Rd → R, d ≥ 1; P(·) and E[·] the
probability and expectation operators, respectively; and I(A)
the indicator of event A. For two positive sequences ηn and
χn, ηn = O(χn) means that lim supn→∞(ηn/χn) < ∞; ηn =
Ω(χn) means that lim infn→∞(ηn/χn) > 0; and ηn = Θ(χn)
means that ηn = O(χn) and ηn = Ω(χn).

II. DISTRIBUTED AUGMENTED

LAGRANGIAN ALGORITHMS

The network and optimization models are in Section II-A,
deterministic distributed AL methods are in Section II-B, while
randomized methods are in Section II-C.

A. Optimization and Network Models

Model: We consider distributed optimization where N
nodes solve the unconstrained problem (1). The function fi :
R

d → R, known only to node i, has the following structure.
Assumption 1 (Optimization model): The functions fi :

R
d �→ R are convex, twice continuously differentiable with

bounded Hessian, i.e., there exist 0 < hmin ≤ hmax < ∞, such
that, for all i:

hminI 	 ∇2fi(x) 	 hmaxI, ∀x ∈ R
d. (5)

Under Assumption 1, problem (1) is solvable and has the
unique solution x�. Denote by f� = infx∈Rd f(x) = f(x�) the
optimal value. Further, Assumption 1 implies Lipschitz conti-
nuity of the ∇fi’s and strong convexity of the fi’s, i.e., for all
i, ∀x, y ∈ R

d:

‖∇fi(x)−∇fi(y)‖ ≤ hmax‖x− y‖,

fi(y) ≥ fi(x) +∇fi(x)
�(y − x) +

hmin

2
‖x− y‖2.

Communication model: We associate with (1) a network
V of N nodes, described by the graph G = (V, E), where
E ⊂ V × V is the set of edges. (We include self-edges: {i, i}
∈ E, ∀i.)

Assumption 2 (Network model): The graph G is connected
and undirected.

Weight matrix and weighted Laplacian: Assign to graph G
a symmetric, stochastic (rows sum to one and all the entries
are non-negative), N ×N weight matrix W , with, for i �= j,
Wij > 0 if and only if {i, j} ∈ E, and Wii = 1−

∑
j �=i Wij .

Let also W̃ := W − J. (See (4) for the role of W .) We require
W to be positive definite and its second largest eigenvalue
λN−1(W ) < 1.

Let L := I −W be the weighted graph Laplacian matrix,
with λ2(L) = 1− λN−1(W ) ∈ (0, 1] the network spectral gap
that measures how well connected the network is. For exam-
ple, for a chain N -node network, λ2(L) = Θ(1/N2), while,
for expander graphs, it stays bounded away from zero as N
grows.

Global knowledge assumptions: We summarize the global
knowledge on the system parameters required by our
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algorithms beforehand at all nodes. They all require (a lower
bound on) the Hessian lower bound hmin, (an upper bound
on) the Hessian upper bound hmax, and a lower bound on the
network spectral gap λ2(L). In addition, the two randomized
methods require an upper bound on the number of nodes N .
Further, each node i initializes its dual variable μi(0) to zero.
This is essential for the algorithm’s convergence. We assume
that all nodes initialize their primal variables to the same values,
i.e., xi(0) = xj(0), ∀i, j; e.g., these are set to zero. Equal pri-
mal variable initialization is not necessary for convergence but
allows for simplified expressions in the analysis. In addition,
each node knows its neighborhood set Oi and assigns before-
hand the weights Wij , j ∈ Oi. We refer to [54] on how all the
above global knowledge can be acquired in a distributed way.
Finally, with all our methods, all nodes use the same algorithm
parameters: the dual step-size α, the AL penalty ρ, the number
of inner iterations τ , and the primal step-size β (with gradient
algorithm variants). As we will see in Sections III and IV, the
parameters α, β, ρ, and τ need to be appropriately set to ensure
convergence; for setting the latter parameters, nodes require
knowledge of (bounds on) hmin, hmax, and λ2(L), and also N
with the randomized methods.

B. Deterministic Methods

We present two variants of deterministic distributed AL
algorithms of type (2), (3). They differ in step (2). Both methods
solve (2) through inner iterations, indexed by s, and perform
(3) in the outer iterations, indexed by k. With the first variant,
nodes update their primal variables via a Jacobi-type method;
with the second variant, they use a gradient descent method
on La(·;μ(k)). At outer iterations k, with both variants, nodes
update the dual variables via the dual gradient ascent method
(while the primal variables are fixed).

Jacobi-Type Primal Updates: We detail the first algorithm
variant. Later, to present other variants, we indicate only the dif-
ferences with respect to this one. Denote by: xi(k, s) the node
i’s primal variable at the inner iteration s and outer iteration
k; and μi(k) the node i’s dual variable at the outer iteration
k. Further, as in (2), (3), denote by xi(k + 1) the node i’s
primal variable at the end of the k-th outer iteration. We relate
the primal variables at the inner and outer iterations: xi(k, s =
0) := xi(k), and xi(k + 1) := xi(k, s = τ). In addition, nodes
maintain a weighted average of their own and the neighbors’
primal variables xi(k, s) :=

∑
j∈Oi

Wijxj(k, s), and xi(k) :=∑
j∈Oi

Wijxj(k). Recall that Oi is the neighborhood set of
node i, including node i.

The algorithm has, as tuning parameters, the weight matrix
W , the number of inner iterations per outer iteration τ , the
AL penalty parameter ρ ≥ 0, and the dual step-size α > 0. The
algorithm is in Algorithm 1.

Algorithm 1 AL with Jacobi-type updates

1: (Initialization) Node i sets k = 0, xi(k = 0) ∈ R
d,

xi(k = 0) = xi(0), and μi(k = 0) = 0.
2: (Inner iterations) Nodes cooperatively run the Jacobi-

type method for s=0, 1, · · · , τ−1, with xi(k, s=0) :=

xi(k) and xi(k, s = 0) := xi(k):

xi(k, s+ 1) = argminxi∈Rd (fi(xi)

+ (μi(k)− ρxi(k, s))
� xi +

ρ‖xi‖2
2

)
(6)

xi(k, s+ 1) =
∑
j∈Oi

Wijxj(k, s+ 1) (7)

and set xi(k+1) := xi(k, s=τ), xi(k+1)=xi(k, s=τ).
3: (Outer iteration) Node i updates the dual variable μi(k):

μi(k + 1) = μi(k) + α (xi(k + 1)− xi(k + 1)) . (8)

4: Set k �→ k + 1 and go to step 2.

Algorithm 1 has outer iterations k (step 3) and inner itera-
tions s (step 2). At inner iteration s, s = 0, · · · , τ − 1, node i
solves the local optimization problem (6) to obtain xi(k, s+
1), broadcasts xi(k, s+ 1) to all its neighbors j ∈ Oi − {i},
receives xj(k, s+ 1), for all j ∈ Oi − {i}; and computes
xi(k, s+ 1) via (7). At outer iteration k, node i updates μi(k)
via (8). (Note that (8) is equivalent to (3).) Each inner iteration
requires one (d-dimensional) broadcast transmission per node,
while the outer (dual) iterations do not require communication.
Overall, node i performs τ broadcast transmissions per k.

Gradient primal updates: This algorithm variant is very
similar to the Jacobi-type variant. It replaces in the Jacobi
variant, Algorithm 1, the Jacobi-type update (6) with the gra-
dient descent update on La(·;μ(k)) in (4). After algebraic
manipulations, obtain the update

xi(k, s+ 1) = (1− βρ)xi(k, s) + βρxi(k, s)

−β (μi(k) +∇fi (xi(k, s))) (9)

where β > 0 is the (primal) step-size parameter. Hence, in
addition to W , α, and ρ, the gradient primal update algorithm
has an additional tuning parameter β.

C. Randomized Methods

We introduce two variants of the randomized distributed AL
methods of type (2), (3). Both utilize the same communication
protocol, but they differ in the way primal variables are updated.
Like the deterministic counterparts, they both update the dual
variables at the outer iterations k, and they update the primal
variables at the inner iterations s. At each inner iteration s, one
node, say i, is selected uniformly at random from the set of
nodes {1, 2, · · · , N}. Upon selection, node i updates its primal
variable and broadcasts it to all its neighbors. We now detail
the time and communication models. The outer iterations occur
at discrete time steps of the physical time; k-th outer iteration
occurs at time τk, k = 1, 2, · · ·, i.e., every τ time units. We
assume that all nodes have synchronized clocks for the dual
variable updates (dual variable clocks). Each node i has another
clock (primal variable clock) that ticks according to a Poisson
process with rate 1; on average, there is one tick of node i in the
time interval of width 1. Whenever node i’s Poisson clock ticks,
node i updates its primal variable and broadcasts it to neighbors.
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The Poisson process clocks are independent. Consider the
Poisson process clock that ticks whenever one of the nodes’
clocks ticks. This process is a rate-N Poisson process. Hence,
in the time interval of length τ , there are on average τN ticks
(primal updates), out of which τ on average are done by i. One
primal update here corresponds to an update of a single node.
Thus, roughly, N updates (ticks) here correspond to one update
(inner) iteration of the deterministic algorithm.

More formally, let (Θ,F ,P) be a probability space. Let
{Ti(a, b]}0≤a≤b<∞ be a Poisson process with rate 1, i =
1, · · · , N . (This is node i’s clock for primal variables.) Thus,
for a fixed a, b, Ti(a, b] : Θ → R, Ti(a, b] = Ti((a, b];ω), ω ∈
Θ, is a Poisson random variable with mean (b− a). Assume
the processes Ti are independent. Let T be a Poisson pro-
cess defined by T (a, b] :=

∑N
i=1 Ti(a, b]. Define the random

variable τ(k) := T (kτ, (k + 1)τ ] (the number of ticks across
all nodes in the k-the outer iteration.) Consider the events
Ak,j := {ω ∈ Θ : τ(k;ω) = j}, j = 0, 1, 2, · · ·. For j ≥ 1, de-
fine the maps: ı̂(k, s) : Ak,j → {1, 2, · · · , N}, s = 0, · · · , j −
1, by ı̂(k, s;ω) = i, if the (s+ 1)-th tick of T in the interval
(kτ, (k + 1)τ ] comes from node i’s clock Ti.

We present two variants of the randomized distributed AL
algorithm: one updates the primal variables via a Gauss-Seidel-
type method and the other replaces the Gauss-Seidel updates by
gradient-type updates.

Gauss-Seidel-Type Updates: The dual variables are updated
(instantaneously) at times kτ , k = 1, 2, · · ·. We denote by
xi(k) := xi(kτ) the node i’s primal variable at time kτ , k =
0, 1, · · · Further, consider ω ∈ Ak,j : the total number of ticks
τ(k) of T in the interval (kτ, (k + 1)τ ] equals j, and hence
we have j inner iterations (ticks) at the outer iteration k.
For any ω ∈ Ak,j , we denote by xi(k, s) the node i’s vari-
able after the s-th inner iteration, s = 1, · · · , j, j ≥ 1. Also,
let xi(k, 0) := xi(k), and, for ω ∈ Ak,j , xi(k, τ(k) = j) :=
xi(k + 1). Each node maintains: 1) the primal variable xi(k);
2) the dual variable μi(k) := μi(kτ); 3) the (weighted) sum of
the neighbors’ variables xi(k) :=

∑
j∈Oi

Wijxj(k); and 4) the
analogous intermediate variables xi(k, s) and xi(k, s) during
the inner iterations s. The algorithm is Algorithm 3.

Algorithm 2 Randomized distributed AL with Gauss-Seidel-
type updates

1: (Initialization) Node i sets k=0, xi(k=0)∈R
d, xi(k =

0) = xi(k = 0), and μi(k = 0) = 0.
2: (Inner iterations) Set xi(k, s = 0) := xi(k), xi(k, s =

0) := xi(k), and s = 0. If ω ∈ Θ is such that τ(k) =
τ(k;ω) > 0, then, for s = 0, 1, · · · , τ(k)− 1, do (else, if
τ(k;ω) = 0, then go to step 3):
Update the inner variables xj(k, s), j = 1, · · · , N , by:

xj(k, s+ 1) =⎧⎪⎪⎨⎪⎪⎩
argminxj∈Rd

(
fj(xj)+(μj(k)−ρxj(k, s))

� xj+
ρ‖xj‖2

2

)
j = ı̂(k, s)
xj(k, s+ 1) = xj(k, s)
else.

(10)

Update the variables xj(k, s), j = 1, · · · , N , by:

xj(k, s+ 1)=

{∑
l∈Ωj

Wjlxl(k, s+ 1) j ∈ Oi : i = ı̂(k, s)

xj(k, s+ 1) = xj(k, s) else
(11)

and all nodes j = 1, · · · , N set xj(k + 1) := xj(k, s =
τ(k)), xj(k + 1) = xj(k, s = τ(k)).

3: (Outer iteration) All nodes j update the dual variables
μj(k) via

μj(k + 1) = μj(k) + α (xj(k + 1)− xj(k + 1)) . (12)

4: Set k �→ k + 1 and go to step 2.

For all i, and arbitrary fixed k, s, Algorithm 3 defines
xi(k, s) = xi(k, s;ω) for any outcome ω ∈ ∪∞

t=sAk,t. We for-
mally define xi(k, s;ω) = 0, for any ω ∈ Θ, ω �∈ ∪∞

t=sAk,t.
Thus, the random variable xi(k, s) is defined as in Algorithm 3
for ω ∈ ∪∞

t=sAk,t, and xi(k, s;ω) = 0, for ω �∈ ∪∞
t=sAk,t.

Gradient Primal Updates: This algorithm variant is the
same as Algorithm 3, except that step (10) is replaced by the
following:

xj(k, s+ 1)

=

⎧⎪⎨⎪⎩
(1−βρ)xj(k,s)+βρxj(k, s)−β (μj(k)+∇fj (xj(k, s)))
for j = ı̂(k, s)
xj(k, s+ 1) = xj(k, s)
else.

(13)

Here, β > 0 is the (primal) step-size parameter.

III. ANALYSIS OF INEXACT AUGMENTED

LAGRANGIAN METHODS

In this Section, we introduce our framework for the analysis
of inexact AL algorithms (2), (3). Section III-A states our result,
while Section III-B proves the result through several auxiliary
Lemmas. In Section IV, we apply these results to each of the
four distributed algorithms.

A. Inexact AL Algorithm: Convergence Rate

We consider an inexact version of algorithm (2)–(3). Intro-
duce compact notation, and denote by x(k) := (x1(k)

�, . . . ,

xN (k)�)�, and μ(k) := (μ1(k)
�, . . . , μN (k)�)

�
. Recall the

function in (4). For any μ ∈ R
Nd, denote by x′(μ) :=

argminx∈RdN La(x;μ). The latter quantity is well-defined as
the function La(·;μ) is strongly convex in x, for any μ.
Recall the weighted Laplacian matrix L = I −W . We con-
sider the following inexact AL method that updates the pri-
mal variable x(k) and the dual variable μ(k) over itera-
tions k = 0, 1, . . .. The primal variable is initialized to x(0) =

(x1(0)
�, . . . , xN (0)�)

�
, with xi(0) = x1(0), ∀i, x1(0) ∈ R

d

arbitrary, and the dual μ(0) = 0. For k = 0, 1, . . ., given x(k),
μ(k), perform the following update:

x(k + 1) be any point such that : (14)
‖x(k + 1)− x′ (μ(k))‖ ≤ ξ ‖x(k)− x′ (μ(k))‖
μ(k + 1) = μ(k) + α(L ⊗ I)x(k + 1). (15)
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Update (15) is (3) rewritten in a compact form. (Here, L ⊗ I
is the Kronecker product of L and the d× d identity matrix.)
In (14), the constant ξ ∈ [0, 1). Update (14) is an inexact
version of (2). Note that x′(μ(k)) corresponds to the exact AL
update. We require that x(k + 1) be close to x′(μ(k)); more
precisely, x(k + 1) be ξ times closer to x′(μ(k)) than x(k). The
motivation for this condition is the following. Given μ(k), we
seek the new primal variable (ideally x′(μ(k))) via an iterative
method, initialized by the previous primal variable x(k). We
stop the iterative method as soon as (14) is fulfilled.6

We now present our generic Theorem on (14)–(15). We apply
it on the four distributed methods in Section IV. Denote by

Dx :=‖x1(0)−x�‖, and Dμ :=((1/N)
∑N

i=1 ‖∇fi(x
�)‖2)1/2.

Theorem 1: Consider algorithm (14)–(15), and let Assump-
tions 1 and 2 hold. Further, let the algorithm and network
parameters satisfy:

α ≤ hmin + ρ and ξ <
1

3

λ2(L)hmin

ρ+ hmax
. (16)

Then, ∀i, xi(k) generated by (14)–(15) converges linearly to
the solution x� of (1), with convergence factor

r := max

{
1

2
+

3

2
ξ,

(
1− αλ2(L)

ρ+ hmax

)
+

3α

hmin
ξ

}
< 1. (17)

It holds

‖xi(k)− x�‖ ≤ rk
√
N max

{
Dx,

2Dμ√
λ2(L)hmin

}
. (18)

Theorem 1 establishes that the inexact AL method converges
to the primal solution at the globally linear rate in the number
of outer iterations, provided that ξ is sufficiently small, and
it quantifies the achieved rate as well as how small ξ should
be. We emphasize the interesting effect of constant Dμ. It
measures how difficult it is to solve (1) by distributed methods
like (2)–(3)—the larger, the more difficult the problem is. If,
at an extreme, the fi’s all have the same minimizer, say y�,
then y� is also the minimizer of (1) (y� = x�). Such problem
is “easy,” because nodes do not need to communicate with
others to obtain the global solution to (1)—“easyness” of the
problem agrees with the value Dμ = 0. On the other hand, if
the local minimizers (of the fi’s), say y�i ’s, are very different,
then they may be very different from x�. Hence, node i needs
to communicate with others to recover x�. This agrees with Dμ

large in such scenarios. (See Lemma 2 that relates Dμ to the
dual optimum.)

B. Auxiliary Results and Proof of Theorem 1

We now prove Theorem 1 by introducing several auxiliary
objects and results. We base our analysis on the following
nonlinear saddle point system of equations:

∇F (x) + μ+ ρ(L ⊗ I)x = 0 (19)
(L ⊗ I)x = 0 (20)
(1⊗ I)�μ = 0. (21)

6As we will see in Section IV, with our distributed methods we do not verify
the termination condition in (14) on-the-fly. Instead, given a desired ξ and
the network and function parameters, we set beforehand the number of inner
iterations τ such that (14) is automatically fulfilled.

In (19), ρ ≥ 0 is the AL penalty parameter, and F : RNd �→
R is defined by F (x) = F (x1, · · · , xN ) = f1(x1) + f2(x2) +
· · ·+ fN (xN ). In (19), x, μ ∈ R

Nd are the primal and dual
variables, whose i-th d-dimensional blocks correspond to node
i’s primal and dual variables, respectively. In (19)–(21) and in
subsequent text, Kronecker products a⊗ b are always such that
the left object a is of size either N × 1 or N ×N , while the
right object is of size d× 1 or d× d. Henceforth, to simplify
notation, we do not designate the objects’ dimensions. The next
Lemma shows that solving (19)–(21) solves (1) at each node i.

Lemma 2: Consider optimization problem (1) and the non-
linear system (19)–(21), and let Assumptions 1 and 2 hold.
Then, there exists unique (x•, μ•) ∈ R

Nd × R
Nd that satisfies

(19)–(21), with x• = 1⊗ x�, where x� is the solution to (1) and
μ• = −∇F (1⊗ x�).

Proof: First show x• = 1⊗ x� and μ• = −∇F (1⊗ x�)
solve (19)–(21). Consider (20). We have (L ⊗ I)x• = (L ⊗
I)(1⊗ x�) = (L1)⊗ (Ix�) = 0, since 1/

√
N is the (unique)

unit-norm eigenvector with eigenvalue 0 of the Laplacian for a
connected network. Next

(1⊗ I)�μ• = −
N∑
i=1

∇fi(x
�) = 0.

The right equality holds because x� is the solution to
(1). Finally, because (L ⊗ I)x• = 0 (already shown) and
∇F (x•) = −μ•, we have (x• = 1⊗ x�, μ• = −∇F (1⊗ x�))
satisfy (19)–(21). The uniqueness is by the uniqueness of the
solution to (1) due to strong convexity. �

Next, introduce the following maps Φ : RNd �→ R
Nd, Ψ :

R
Nd �→ R

Nd, and Φi : R
d �→ R

d, i = 1, . . . , N :

Φ(x) := ∇F (x) + ρx (22)

Ψ(x) := ∇F (x) + ρLx (23)

Φi(x) := ∇fi(x) + ρx. (24)

Further, define the maps: Φ−1 : RNd → R
Nd, Ψ−1 : RNd →

R
Nd, and Φ−1

i : Rd → R
d by:

Φ−1(μ) := argminy∈RNd

(
F (y)− μ�y +

ρ

2
‖y‖2

)
(25)

Ψ−1(μ) := argminy∈RNd

(
F (y)− μ�y +

ρ

2
y�Ly

)
(26)

Φ−1
i (μ) := argminy∈Rd

(
fi(y)− μ�

i y +
ρ

2
‖y‖2

)
. (27)

The cost function in (26) is precisely La(y;−μ) in (4). For
any μ ∈ R

Nd, these maps are well-defined by Assumption 1.
(This assumption ensures that there exists a unique solution in
the minimizations in (25)–(27), as the costs in (25)–(27) are all
strongly convex.) Next, we have

∇F
(
Φ−1(μ)

)
+ ρΦ−1(μ) = μ = Φ

(
Φ−1(μ)

)
where the left equality is by the first order optimality condi-
tions, from (25), and the right equality is by definition of Φ in
(22). Thus, the map Φ−1 is the inverse of Φ. Likewise, the map
Ψ−1 (Φ−1

i ) is the inverse of Ψ (Φi). By the inverse function the-
orem, e.g., [55], the maps Φ−1 : RNd → R

Nd, Ψ−1 : RNd →
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R
Nd, and Φ−1

i : Rd → R
d are continuously differentiable, with

derivatives

∇Φ−1(μ) =
(
∇2F

(
Φ−1(μ)

)
+ ρI

)−1
(28)

∇Ψ−1(μ) =
(
∇2F

(
Ψ−1(μ)

)
+ ρ(L ⊗ I)

)−1
(29)

∇Φ−1
i (μ) =

(
∇2fi

(
Φ−1

i (μ)
)
+ ρI

)−1
. (30)

Note that invertibility is assured because ∇2F (x) and ∇2fi(xi)
are positive definite, ∀x ∈ R

Nd, ∀xi ∈ R
d, and so are the matri-

ces in (28)–(30). Using the following identity for a continuously
differentiable map h : RNd → R

Nd, ∀u, v ∈ R
Nd:

h(u)− h(v) =

⎡⎣ 1∫
0

∇h (v + z(u− v)) dz

⎤⎦ (u− v) (31)

we obtain the following useful relations:

Φ−1(μ1)− Φ−1(μ2) = RΦ(μ1, μ2)(μ1 − μ2),

RΦ(μ1, μ2) :=

1∫
z=0

∇Φ−1 (μ1 + z(μ2 − μ1)) dz (32)

Ψ−1(μ1)−Ψ−1(μ2) = RΨ(μ1, μ2)(μ1 − μ2),

RΨ(μ1, μ2) :=

1∫
z=0

∇Ψ−1(μ1 + z (μ2 − μ1)) dz (33)

Φ−1
i (μ1)− Φ−1

i (μ2) = RΦ,i(μ1, μ2)(μ1 − μ2),

RΦ,i(μ1, μ2) :=

1∫
z=0

∇Φ−1
i (μ1 + z (μ2 − μ1)) dz. (34)

By Assumption 1: hminI 	 ∇2F (x) 	 hmaxI , ∀x ∈ R
Nd.

Using the latter, (28), (29), (31), and L = I −W , 0 	 L 	
I (W  0, symmetric, stochastic), we obtain the follow-
ing properties of the (Nd)× (Nd) matrices RΦ(μ1, μ2) and
RΨ(μ1, μ2), and d× d matrices RΦ,i(μ1, μ2):

1

hmax + ρ
I 	RΦ(μ1, μ2) 	

1

hmin + ρ
I,

∀μ1, μ2 ∈ R
Nd (35)

1

hmax + ρ
I 	RΨ(μ1, μ2) 	 (hminI + ρ(L ⊗ I))−1 ,

∀μ1, μ2 ∈ R
Nd (36)

1

hmax + ρ
I 	RΦ,i(μ1, μ2) 	

1

hmin + ρ
I,

∀μ1, μ2 ∈ R
d. (37)

The right inequality in (36) holds because, ∀μ,∇2F (Ψ−1(μ))+
ρ(L ⊗ I) � hminI + ρ(L ⊗ I) (due to Assumption 1), and so
[∇2F (Ψ−1(μ)) + ρ(L ⊗ I)]

−1 	 [hminI + ρ(L ⊗ I)]−1.
Denote by x̃(k) := x(k)− x• and μ̃(k) := μ(k)− μ• the

primal and dual errors, respectively. Also, write x′(k + 1) :=
x′(μ(k)), to simplify notation. We now state and prove several

Lemmas that allow us to prove Theorem 1. We prove these
lemmas assuming d = 1, to avoid further extensive use of
Kronecker products; the proofs extend to generic d > 1. We
first upper bound the primal error ‖x̃(k + 1)‖.

Lemma 3 (Primal Error): Let Assumptions 1, 2 hold. Then,
for k = 0, 1, · · ·

‖x̃(k + 1)‖ ≤ ξ ‖x̃(k)‖+ 1

hmin
(1 + ξ) ‖μ̃(k)‖ .

Proof: Write x̃(k + 1) = (x(k + 1)− x′(k + 1)) +
(x′(k + 1)− x•). Then, ‖x̃(k + 1)‖ ≤ ‖x(k + 1)− x′(k +
1)‖+ ‖x′(k + 1)− x•‖. From (14), we know that ‖x(k +
1)− x′(k + 1)‖ ≤ ξ‖x(k)− x′(k + 1)‖. The latter is further
upper bounded as: ‖x(k)− x′(k + 1)‖ ≤ ξ‖x(k)− x• + x• −
x′(k + 1)‖ ≤ξ‖x̃(k)‖+ ξ‖x• − x′(k + 1)‖. Hence

‖x̃(k + 1)‖ ≤ ξ ‖x̃(k)‖+ (1 + ξ) ‖x′(k + 1)− x•‖ . (38)

It remains to upper bound ‖x′(k + 1)− x•‖. Note that x• =
Ψ−1(−μ•), and x′(k + 1) = Ψ−1(−μ(k)). Using the latter and
(33), we obtain

x′(k + 1)− x• =Ψ−1 (−μ(k))−Ψ−1(μ•)

= −RΨ(k) (μ(k)− μ•) (39)

with RΨ(k) := RΨ(−μ(k),−μ•). This, with (36), and μ̃(k) =
μ(k)− μ•, gives

‖x′(k + 1)− x•‖ ≤ 1

hmin
‖μ̃(k)‖ . (40)

The result follows from (38) and (40). �
Since our final goal is to bound the primal error, rather

than bounding μ̃(k) = μ(k)− μ•, it turns out to be more
useful to bound a certain transformed dual quantity. Repre-
sent the weighted Laplacian matrix L through its (reduced)
eigen-decomposition (we do not include the pair (0, q1))
L = QΛ̂Q� =

∑N
i=2 λiqiq

�
i , where (λi, qi) is the i-th eigen-

value, eigenvector pair (λi > 0, for all i = 2, · · · , N ); Q =
[q2, · · · , qN ]; and Λ̂ = diag(λ2, · · · , λN ). Instead of bounding
the dual error, we bound the norm of μ̃′′(k) ∈ R

N−1 that we
define

μ̃′(k) := Q�μ̃(k) ∈ R
N−1 and μ̃′′(k) := Λ̂−1/2μ̃′(k). (41)

Lemma 4 (Dual Error): Let α ≤ hmin + ρ, and let Assump-
tions 1 and 2 hold. Then, for all k = 0, 1, · · ·

‖μ̃′′(k+1)‖≤
[(

1− αλ2(L)
hmax+ρ

)
+

α

hmin
ξ

]
‖μ̃′′(k)‖+αξ‖x̃(k)‖.

Proof: Because Lx• = Lx�1 = 0:

Lx(k + 1) = L (x(k + 1)− x′(k + 1)) + L (x′(k + 1)− x•) .

Using this and subtracting μ• from both sides of (15):

μ̃(k + 1) = μ̃(k) + αL (x′(k + 1)− x•)

+ αL (x(k + 1)− x′(k + 1)) . (42)
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Further, using (39), we get

μ̃(k + 1)=(I − αLRΨ(k)) μ̃(k)+α (Lx(k+1)− x′(k+1)) .
(43)

Now, recall μ̃′(k) in (41). It is easy to see that

‖μ̃′(k)‖ = ‖μ̃(k)‖ , QQ�μ̃(k) = μ̃(k). (44)

Indeed, note that 1�μ(k)=1�μ(k−1)+α1�Lx(k)=1�μ(k −
1) = · · · = 1�μ(0) = 0, because μ(0) = 0 (by assumption.)
Also, 1�μ• = 0 (see Lemma 2.) Therefore, 1�μ̃(k) =
0, ∀k. Now, as q1 = (1/

√
N)1, we have QQ�μ̃(k) =∑N

i=2 qiq
�
i μ̃(k) =

∑N
i=1 qiq

�
i μ̃(k) = μ̃(k); thus, the second

equality in (44). For the first equality in (44), observe that
‖μ̃′(k)‖2 = (μ̃′(k))�μ̃′(k) = μ̃(k)�QQ�μ̃(k) = ‖μ̃(k)‖2.

Next, multiplying (43) from the left by Q�, expressing L =
QΛ̂Q�, and using (44), obtain

μ̃′(k + 1) =
(
I − αΛ̂Q�RΨ(k)Q

)
μ̃′(k)

+αΛ̂Q� (x(k + 1)− x′(k + 1)) . (45)

Further, recall μ̃′′(k) in (41). Multiplying (45) from the left by
Λ̂−1/2, we obtain

μ̃′′(k + 1) =
(
I − αΛ̂

1
2Q�RΨ(k)QΛ̂

1
2

)
μ̃′′(k)

+αΛ̂
1
2Q� (x(k + 1)− x′(k + 1)) . (46)

Next, using variational characterizations of minimal and maxi-
mal eigenvalues, we can verify

λ2

hmax + ρ
I 	 Λ̂

1
2Q�RΨ(k)QΛ̂

1
2 	 1

hmin + ρ
I. (47)

The right inequality in (47) holds because of the
following. First, use the right inequality in (36) to show
Λ̂1/2Q�RΨ(k)QΛ̂1/2 	 Λ̂1/2Q�[hminI+ρL]−1QΛ̂1/2. (Note
that Λ̂ is (N − 1)× (N − 1), Q is N × (N − 1), and
[hminI + ρL]−1 is N ×N ). Next, decompose the N ×N
matrix [hminI + ρL]−1 via the (N ×N) eigenvalue decom-
position, and use orthogonality of the eigenvectors of L to show
that the ((N − 1)× (N − 1)) matrix: Λ̂1/2Q�RΨ(k)QΛ̂1/2 	
Λ̂1/2[hminI+ρΛ̂]

−1
Λ̂1/2. The maximal eigenvalue of

Λ̂1/2[hminI+ρΛ̂]−1Λ̂1/2 is 1/(hmin/(λN + ρ(L)+ρ)≤
1/(hmin+ ρ). Next, by Assumption, α ≤ hmin + ρ, and so∥∥∥I − αΛ̂

1
2Q�RΨ(k)QΛ̂

1
2

∥∥∥ ≤ 1− αλ2

hmax + ρ
. (48)

Using (48), ‖Λ̂1/2‖≤1 (as 0 	 L	I), ‖Q‖=1, and Lemma 3,
we get

‖μ̃′′(k + 1)‖ ≤
(
1− αλ2

hmax + ρ

)
‖μ̃′′(k)‖

+αξ ‖x̃(k)‖+ αξ
‖μ̃(k)‖
hmin

.

Finally, using ‖μ̃(k)‖ = ‖μ̃′(k)‖ = ‖Λ̂1/2μ̃′′(k)‖ ≤ ‖μ̃′′(k)‖,
we obtain the desired result. �

We are now ready to prove Theorem 1.
Proof of Theorem 1: Introduce ν(k) := (2/hmin)‖μ̃′′(k)‖.

Further, denote by c11 := ξ, c12 := (1/2)[1 + ξ]; c21 :=
(2α/hmin)ξ, and c22 := 1− αλ2/(hmax + ρ) + (α/hmin)ξ.
Using ‖μ̃(k)‖ ≤ ‖μ̃′′(k)‖, Lemma 3, and Lemma 4, we obtain:

max {‖x̃(k + 1)‖ , ν(k + 1)} ≤ rmax {‖x̃(k)‖ , ν(k)}

with r = max{c11 + c12, c21 + c22}. Unwinding the
recursion, using ‖x̃(k)‖ ≤ max{‖x̃(k)‖, ν(k)}, ν(0) =

(2/hmin)‖Λ̂−1/2Q�μ̃(0)‖=(2/hmin)‖Λ̂−1/2Q�(−∇F (x�1))‖
≤(2/hmin

√
λ2)

√
NDμ, obtain (18).

It remains to show that r < 1 if conditions (16) hold. Note
that: c11 + c12 = (1/2) + (3/2)ξ, and so c11 + c12 < 1 if:
ξ < 1/3. Next, note that: c21 + c22 = 1− αλ2/(ρ+ hmax) +
(3α/hmin)ξ, and so c21 + c22 < 1 if: ξ < (1/3)(hminλ2/(ρ+
hmax)). Combining the last two conditions, obtain r < 1 if
conditions (16) hold. The proof is complete. �

IV. ANALYSIS OF DISTRIBUTED AUGMENTED

LAGRANGIAN METHODS

In this section, we specialize our results from Section III to
each of the four distributed AL algorithm variants. More pre-
cisely, we characterize the quantity ξ in (14) with each method.
This, with Theorem 1, allows us to establish convergence rates
in the inner iterations.

With each of the four variants, we use compact notation:
x(k) = (x1(k)

�, . . . , xN (k)�)�, μ(k) = (μ1(k)
�, . . . ,

μN (k)�)�, and x(k, s) = (x1(k, s)
�, . . . , xN (k, s)�)

�
. We

start with the deterministic Jacobi-type variant. For the proofs
of the results in the current Section, we let d = 1 for notation
simplicity, but they extend to a generic d > 1.

Lemma 5 (Deterministic Jacobi-Type): Consider the dis-
tributed AL algorithm with deterministic Jacobi-type primal
updates and τ inner iterations. Further, let Assumptions 1 and 2
hold. Then, for all k = 0, 1, · · ·:

‖x(k + 1)−x′(k + 1)‖≤
(

ρ

ρ+ hmin

)τ

‖x(k)− x′(k + 1)‖ .

Proof: Recall that x′(k+1)=argminx∈RN La(x;μ(k)).
From the corresponding first order optimality conditions, we
have: ∇F (x′(k + 1)) + ρLx′(k + 1) = −μ(k). Hence, using
L = I −W and the definition of Φ in (22)

x′(k+1) = Φ−1 (ρWx′(k + 1)− μ(k)) . (49)

Fix s, 0 ≤ s ≤ τ − 1. Next, from Algorithm 1 and definition
of Φ:

x(k, s+ 1) = Φ−1 (ρWx(k, s)− μ(k)) ; (50)

Subtracting x′(k + 1) from both sides of (50), and using (49)
and (32)

x(k, s+ 1)− x′(k + 1) = RΦ(s)ρW (x(k, s)− x′(k + 1))
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where RΦ(s) := RΦ(ρWx(k, s)−μ(k), ρWx′(k+1)−μ(k)).
Using (35) and ‖W‖ = 1, obtain

‖x(k, s+ 1)−x′(k + 1)‖≤
(

ρ

ρ+hmin

)
‖x(k, s)−x′(k+1)‖ .

Applying this for s = 0, 1, · · · , τ − 1, using x(k, τ) = x(k +
1), x(k, 0) = x(k), get:

‖x(k + 1)−x′(k + 1)‖≤
(

ρ

ρ+ hmin

)τ

‖x(k)− x′(k + 1)‖ .
(51)

�
The immediate corollary of Lemma 5 is that, for the dis-

tributed AL algorithm with Jacobi-type primal updates, The-
orem 1 holds with ξ := (ρ/(ρ+ hmin))

τ . In other words, if
the conditions on the system parameters in Theorem 1 hold,
the distributed AL algorithm converges linearly in the outer
iterations. Furthermore, as the number of inner iterations is
fixed and equals τ , the algorithm also converges linearly in the
number of inner iterations, and hence in the number of per-
node communications, with the convergence factor r1/τ . Note
that, for any choice of ρ ≥ 0, we can choose α and τ such
that linear convergence is assured. Recall the fi’s condition
number γ = hmax/hmin. Setting ρ = hmax, α = hmin + ρ, and
τ = �(log(12(γ + 1)/λ2)/ log(1 + 1/γ))�, we obtain the con-
vergence factor at outer iterations r = 1− Ω(λ2). Hence, inter-
estingly, we can eliminate the negative effect of the condition
number γ at the outer iterations level. Of course, we pay a price
at the inner iterations level, where the convergence factor is, for
λ2 bounded away from one, r1/τ = 1− Ω(λ2/γ log(γ/λ2)).

We remark that, for a reasonable choice of the step-size α
and the AL penalty ρ, e.g., α = ρ = hmin, our results do not
guarantee linear convergence for τ = 1. (Hence, we do not
guarantee convergence either, for τ = 1). However, we know
from the literature that, for any choice of α = ρ > 0, and a
certain choice of W (see [10]), the algorithm with Jacobi-type
updates and τ = 1 (a distributed ADMM) converges globally
linearly to the primal solution [10]. This, in particular, means
that, for τ = 1, α = ρ > 0, and W in [10], the algorithm always
converges, and always at a globally linear rate.

We now consider the deterministic gradient variant.
Lemma 6 (Deterministic gradient): Consider the distributed

AL algorithm with deterministic gradient primal updates with
τ inner iterations and the primal step-size β ≤ 1/(hmax + ρ).
Further, let Assumptions 1 and 2 hold. Then, for all k = 0, 1, · · ·

‖x(k + 1)−x′(k + 1)‖ ≤ (1− βhmin)
τ ‖x(k)− x′(k + 1)‖ .

Proof: Using L = I −W and compact notation, the up-
date (9) is rewritten as:

x(k, s+1) = x(k, s)−β (ρLx(k, s)+μ(k)+∇F (x(k, s))) .
(52)

This is the gradient descent on La(·;μ(k)) in (4). As x′(k + 1)
satisfies ρLx′(k + 1) + μ(k) +∇F (x′(k + 1)) = 0, we have

x′(k+1)=x′(k+1)− β(ρLx′(k+1)+μ(k)+∇F(x′(k+1))) .
(53)

Further, by Assumption 1, ∇F : RN → R
N is continuously

differentiable, and it holds:

∇F (x(k, s))−∇F (x′(k + 1))

=

⎡⎣ 1∫
z=0

∇2F (x′(k + 1) + z(x(k, s)− x′(k + 1))) dz

⎤⎦
× (x(k, s)− x′(k + 1))

=: HF (s)(x(k, s)− x′(k + 1)). (54)

Further, by Assumption 1, the matrix HF (s) satisfies:

hminI 	 HF (s) 	 hmaxI. (55)

Using (54), and subtracting (53) from (52), we obtain

x(k, s+ 1)− x′(k + 1) = (I − βρL − βHF (s))

× (x(k, s)− x′(k + 1)) . (56)

Consider the matrix (I − βρL − βHF (s)). As β ≤ (1/ρ+
hmax) (by assumption), using (55) and 0 	 L 	 I , get:
(I − βρL − βHF (s)) � 0. Thus, ‖I − βρL − βHF (s)‖ ≤
1− λ1(βρL+ βHF (s)) ≤ 1− βhmin. Applying this bound to
(56), obtain the inequality

‖x(k, s+ 1)−x′(k + 1)‖≤(1− βmin) ‖x(k, s)−x′(k + 1)‖ .
(57)

Applying (57) for s = 0, · · · , τ − 1, using x(k, s = 0) = x(k),
and x(k, s = τ) = x(k + 1), we obtain the desired result. �

The immediate corollary of Lemma 6 is that Theorem 1 holds
for the deterministic gradient variant, with ξ = (1− βhmin)

τ .
Hence, under the conditions of Theorem 1, the algorithm
converges linearly in the number of inner iterations, with
the convergence factor r1/τ . This implies linear convergence
both in the number of per-node communications and in the
number of per-node gradient evaluations (gradients of fi’s).
Setting ρ = hmax, α = hmin + ρ, β = 1/(hmax + ρ), and: τ =
�log(12(1 + γ)/λ2)/ log(1 + (1/2γ − 1))�, gives the conver-
gence factor in the inner iterations (for λ2 bounded away from
one) as r1/τ = 1− Ω(λ2/γ log(γ/λ2)).

Note that, for reasonable choices of α, β, and ρ, e.g., α =
ρ = hmin, β = 1/(ρ+ hmax), our results do not guarantee
convergence nor linear convergence rates when we set τ = 1.
Reference [20] establishes global convergence of a similar
algorithm for τ = 1, ρ = 0, and a sufficiently small α and β.
An interesting research direction is to explore whether there
is a boundary between stability results and global linear rates.
In other words, setting τ = 1, an open problem is whether for
certain choices of α, β, and ρ the algorithm converges, but at
globally sub-linear rates. (Recall that this scenario does not
occur with the Jacobi-type variant.) Another important open
problem is to research whether, for τ = 1, there exists a choice
of α, β, and ρ that ensures globally linear rates.

Recall the random model in Section II-C and the randomized
Gauss-Seidel-type method.
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Lemma 7 (Randomized Gauss-Seidel-Type): Consider the
distributed AL algorithm with randomized Gauss-Seidel-type
primal updates, where the expected number of inner iterations
equals τ . Further, let Assumptions 1 and 2 hold. Then, for all
k = 0, 1, · · ·

E [‖x(k + 1)− x′(k + 1)‖] ≤ e−ητ
E [‖x(k)− x′(k + 1)‖]

where

η := N

{
1−
[
1− 1

N

(
1− ρ2

(ρ+ hmin)2

)] 1
2

}
. (58)

Proof: Fix some k, fix some j = 1, 2, . . ., and take ω ∈
Ak,j . Thus, τ(k) = τ(k;ω) = j and there are j inner iterations.
Fix some s, s ∈ {0, 1, . . . , j − 1}, and suppose that ı̂(k, s) =
i (node i is activated.) We have that xi(k, s+ 1) satisfies the
following:

xi(k, s+ 1) = Φ−1
i

⎛⎝∑
j∈Oi

ρWijxj(k, s)− μi(k)

⎞⎠ .

On the other hand, we know that x′
i(k + 1) satisfies:

x′
i(k + 1) = Φ−1

i

⎛⎝∑
j∈Oi

ρWijx
′
j(k + 1)− μi(k)

⎞⎠ .

Subtracting the above equalities, and using (37), letting

RΦ,i(s) := RΦ,i

⎛⎝ρ
∑
j∈Oi

Wijxj(k, s)− μi(k),

ρ
∑
j∈Oi

Wijx
′
j(k + 1)− μi(k)

⎞⎠
and squaring the equality, we obtain:

(xi(k, s+ 1)− x′
i(k + 1))

2

= (RΦ,i(s))
2 ρ2

⎛⎝∑
j∈Oi

Wij(xj(k, s)− x′
j(k + 1))

⎞⎠2

≤
(

ρ

ρ+ hmin

)2 ∑
j∈Oi

Wij(xj(k, s)− x′
j(k + 1))2 (59)

= δ2
N∑
j=1

Wij(xj(k, s)− x′
j(k + 1))2. (60)

Here, (59) further uses: 1) convexity of the quadratic function
u �→ u2; 2) the fact that

∑
j∈Oi

Wij = 1; and 3) the fact that
the Wij’s are nonnegative. Also, (60) introduces notation: δ :=
ρ/(ρ+ hmin), and uses the fact that Wij = 0 if {i, j} �∈ E
and i �= j. As node i is selected, the remaining quantities
xj(k, s), j �= i, remain unchanged; i.e., xj(k, s+ 1)− x′

j(k +

1) = xj(k, s)− x′
j(k + 1), j �= i. Squaring the latter equali-

ties, adding them up for all j �= i, and finally adding them to
(60), we obtain

‖x(k, s+ 1)− x′(k + 1)‖2

≤ ‖x(k, s)− x′(k + 1)‖2

+δ2
N∑
j=1

Wij

(
xj(k, s)− x′

j(k + 1)
)2

− (xi(k, s)− x′
i(k + 1))

2 (61)

for any ω ∈ Ak,j such that ı̂(k, s) = i.
We now compute the conditional expectation of ‖x(k, s+

1)− x′(k + 1)‖2, conditioned on τ(k) = j, x(k) = x(k, 0),
μ(k), and x(k, 1), . . . , x(k, s), s ≤ j − 1. Conditioned on the
latter, each node i updates equally likely, with conditional
probability 1/N , and therefore

E

[
‖x(k, s+ 1)− x′(k + 1)‖2 | x(k), μ(k), τ(k)

= j, x(k, 1), . . . , x(k, s)]

≤ ‖x(k, s)− x′(k + 1)‖2 +

1

N
δ2

N∑
i=1

N∑
j=1

Wij

(
xj(k, s)− x′

j(k + 1)
)2

− 1

N

N∑
i=1

(xi(k, s)− x′
i(k + 1))

2

= ‖x(k, s)− x′(k + 1)‖2

+
1

N
δ2

N∑
j=1

(
xj(k, s)− x′

j(k + 1)
)2 N∑

i=1

Wij

− 1

N
‖x(k, s)− x′(k + 1)‖2 (62)

= ‖x(k, s)− x′(k + 1)‖2 + 1

N
δ2 ‖x(k, s)− x′(k + 1)‖2

− 1

N
‖x(k, s)− x′(k + 1)‖2 , ∀ω ∈ Ak,j . (63)

Here, inequality (63) uses the fact that
∑N

i=1 Wij = 1, ∀j.
Rewriting (63), we get:

E
[
‖x(k, s+ 1)− x′(k + 1)‖2

∣∣
|x(k), μ(k), τ(k) = j, x(k, 1), . . . , x(k, s) ]

≤
(
1− 1

N
(1− δ2)

)
‖x(k, s)− x′(k + 1)‖2 , ∀ω ∈ Ak,j .

Denote by δ′ := (1− (1/N)(1− δ2))1/2. Using the follow-
ing inequality for quadratic convex functions and conditional
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expectation: E[U2|V ] ≥ E
2[|U | |V ], we obtain

E [‖x(k, s+ 1)− x′(k + 1)‖ |x(k), μ(k), τ(k) = j,

x(k, 1), . . . , x(k, s)]

≤ δ′ ‖x(k, s)− x′(k + 1)‖ , ∀ω ∈ Ak,j .

Integrating with respect to x(k, 1), . . . , x(k, s)

E [‖x(k, s+ 1)− x′(k + 1)‖ |x(k), μ(k), τ(k) = j]

≤ δ′E [‖x(k, s)− x′(k + 1)‖ |x(k), μ(k), τ(k) = j] ,

∀ω ∈ Ak,j .

Applying the above inequality for s = 0, 1, . . . , j − 1, and us-
ing x(k, s = τ(k) = j) = x(k + 1)

E [‖x(k + 1)− x′(k + 1)‖ |x(k), μ(k), τ(k) = j]

≤ (δ′)
j
E [‖x(k)− x′(k + 1)‖ |x(k), μ(k), τ(k) = j] ,

∀ω ∈ Ak,j , ∀j = 0, 1, . . .

and so

E [‖x(k + 1)− x′(k + 1)‖|x(k), μ(k), τ(k)]

≤ (δ′)
τ(k)

E [‖x(k)− x′(k + 1)‖ |x(k), μ(k), τ(k)] ,
almost surely(a.s.)

Integrating with respect to x(k), μ(k)

E [‖x(k + 1)− x′(k + 1)‖ |τ(k)]

≤ (δ′)
τ(k)

E [‖x(k)− x′(k + 1)‖ |τ(k)]

= (δ′)
τ(k)

E [‖x(k)− x′(k + 1)‖] , a.s.

where we used independence of τ(k) and x(k), μ(k). Taking
expectation, we obtain

E [‖x(k + 1)− x′(k + 1)‖]

≤ E

[
(δ′)

τ(k)
]
E [‖x(k)− x′(k + 1)‖] .

Because τ(k) is distributed according to the Poisson
distribution with parameter Nτ , we have: E[(δ′)τ(k)] =∑∞

l=0(δ
′)l)e−Nτ (Nτ)l/l!) = e−(1−δ′)Nτ . We get

E [‖x(k + 1)− x′(k + 1)‖] ≤
e−(1−δ′)Nτ

E [‖x(k)− x′(k + 1)‖] . (64)

Substituting the expression for η, we obtain the desired result.�
Consider Theorem 1. Note that it does not apply directly to

the randomized algorithm variants. However, it can be easily
adapted to the randomized variants as well. Namely, con-
sider the following random inexact AL method. Use the same
initialization as for (14)–(15). Given x(k), μ(k), define (as
before) x′(k + 1) := x′(μ(k)) := argminx La(x;μ(k)). The
primal update is as follows: let x(k + 1) be a random variable
that obeys E[‖x(k + 1)− x′(k + 1)‖] ≤ ξE[‖x(k)− x′(k +
1)‖]. (This replaces (14) in Theorem 1.) The dual update
is the same as in (15). Then, it is straightforward to show

that, under condition (16), the following holds: E[‖xi(k)−
x�‖] ≤rk

√
N max{Dx, (2Dμ/

√
λ2(L)hmin)}, where r is in

(17). Now, applying Lemma 7, the last result holds for the
randomized Gauss-Seidel-type variant, with ξ = e−ητ . It turns
out that an analogous conclusion also holds for the randomized
gradient variant, with η replaced by η′, defined in the following
Lemma.

Lemma 8 (Randomized Gradient): Consider the distributed
AL algorithm with randomized gradient primal updates, let the
expected number of inner iterations equal τ , and let the primal
step-size β ≤ 1/(hmax + ρ). Further, let Assumptions 1 and 2
hold. Then, for all k = 0, 1, . . .:

E [‖x(k + 1)− x′(k + 1)‖] ≤ e−η′τ
E [‖x(k)− x′(k + 1)‖]

where

η′ := N

{
1−
[
1− 1

N
βhmin(2− βhmin)

] 1
2

}
. (65)

The proof of Lemma 8 is similar to that of Lemma 7. For
the randomized algorithm and gradient updates, (59), (60) hold
with ρ2/(ρ+ hmin)

2 replaced by (1− βhmin)
2.

V. SIMULATION EXAMPLE

We provide a simulation example with l2-regularized logistic
losses. The simulations corroborate a globally linear conver-
gence for both the deterministic and randomized distributed AL
methods, and show that it is usually advantageous to take a
small number of inner iterations τ .

Optimization Problem: We detail the simulation. We con-
sider distributed learning via the l2-regularized logistic loss;
see, e.g., [56] for further details. Nodes minimize the logistic
loss

N∑
i=1

fi(x) =

N∑
i=1

(
log
(
1 + e−bi(a�

i x1+x0)
)
+

P‖x‖2
2N

)

where P > 0 is the regularization parameter, x = (x�
1 , x0)

� ∈
R

15, ai ∈ R
14 is the node i’s feature vector, and bi ∈ {−1,+1}

is its class label. The Hessian ∇2fi(x) = (P/N)I + (e−c�i x/

(1 + e−c�i x)
2
)cic

�
i , where ci = (bia

�
i , bi)

� ∈ R
15. We take

node i’s constants hmin,i and hmax,i as: hmin,i = P/N and
hmax,i = (P/N) + (1/4)‖cic�i ‖. (Note that e−c�i y/(1 +

e−c�i y)2 ≤ 1/4 for all y). Further, we let hmin =
mini=1,···,N hmin,i and hmax = maxi=1,···,N hmax,i. For
the specific problem instance here, the condition number
γ = hmax/hmin = 49.55.

Data: The ai’s are independent over i. Their entries and the

entries of the “true” vector x� = (x�
1
�, x�

0)
�

are independent
standard normal. The class labels are bi = sign(x�

1
�ai + x�

0 +
εi), where the εi’s are independent zero mean, standard devia-
tion 0.001, Gauss.

Network: The network is geometric, connected, with 10
nodes placed uniformly randomly on a unit square, connected
by an edge (28 links) if their distance less than a radius.
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Algorithm Parameters, Metrics, and Implementation: We
set the weight matrix W = (1.1/2)I + (0.9/2)Wm, where
Wm is the Metropolis weight matrix. (Note that W  0).
Further, α = ρ = hmin with all algorithm variants, and
β = 1/(ρ+ hmax) = 1/(γ + 1)hmin with the methods that
use the gradient primal updates. For the deterministic variant
and Jacobi-type updates, we set the number of inner iterations
τ = �log(3(1 + γ)/λ2(L))/ log(2)�; with the deterministic
gradient variant τ = �log(3(1 + γ)/λ2(L))/ log((γ + 1)/γ)�;
with the randomized Gauss-Seidel-type variant τ =
�(| log(3(1 + γ)/λ2(L))|/N(1− (1− 3/(4N))1/2)�; and
with the randomized gradient variant τ = �| log(3(1 +
γ)/λ2(L))|/N(1− (1− (1 + 2γ)/N(1 + γ)2)1/2)�. The
above values of the algorithm parameters α, β, ρ, and τ
satisfy conditions of Theorem 1 and Lemmas 5-8, and hence
they guarantee linear convergence rates. We also simulate the
methods with τ = 1 (although our theory does not guarantee
linear convergence in such case.) We initialize from zero the
primal and dual variables with all methods. We consider relative
error (1/N)

∑N
i=1(f(xi)− f�/f(0)− f�). We compare the

methods in terms of: 1) total number of transmissions
(across all nodes), and 2) total computational time. We
implement the methods via a serial implementation—one
processor works the jobs of all nodes. We count the
CPU time for the overall jobs across all nodes. With the
methods that use the Gauss-Seidel and Jacobi-type updates
in (6), we solve the local problems via the fast Nesterov
gradient method for strongly convex functions. At the inner
iteration s and outer iteration k, to solve (6), we initialize
the Nesterov gradient method by xi(k, s). We stop the
algorithm after: �| log(2ε/(R′)2L′)/ log(1−

√
(1/γ′))|�

iterations, with7 ε = 10−5. This guarantees that the optimality
gap upon termination is below ε = 10−5. Here, L′ is a
Lipschitz constant for the cost function in (6) that (at node
i) we take as hmax,i + ρ. Further, γ′ = L′/ν ′ is the cost
condition number, where ν ′ = hmin,i + ρ is the Hessian lower
bound. The estimate of the distance to the solution is R′ =
1/(ρ+ P/N)‖∇f̂i(xi(k, s))+(P/N + ρ)xi(k, s) + (μi(k)−
ρxi(k, s))‖, f̂i(x) = log(1 + exp(−bi(a

�
i x1 + x0))). All

Figures are in semi-log scale.
In Fig. 1 (first Figure from top), we plot the relative error

in the cost function for the deterministic variants versus the
number of communications, while in Fig. 1 (second figure),
we depict the same quantity versus the CPU time (This is
the cumulative CPU time across all nodes.) We simulate the
Jacobi-type method with both theoretical value of τ and τ = 1,
and the gradient method with both theoretical value of τ and
τ = 1. The Figures illustrate the linear convergence of the
proposed methods. We report that the gradient method with
the theoretical value of τ also shows a linear convergence in
the number of communications, but it converges slowly due to
the large value of τ . The Jacobi-type variant is better in terms
of communication cost but is worse in terms of computational
cost. Figs. 1 (third and fourth) present the same plots for the
randomized Gauss-Seidel-type and gradient-type methods. The

7We implicitly assume that the physical time allocated for each inner iteration
s suffices to perform optimization (6).

Fig. 1. Deterministic (two top most) and randomized (two bottom right) AL

methods: Average relative error in the cost function (1/N)
∑N

i=1
(f(xi)−

f�/f(0)− f�). First and third plots: communication cost (total number of
communications across all nodes). Second and fourth plots: computational cost
(total CPU time across all nodes.) NJ—Jacobi; NGS–Gauss-Seidel.
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behavior is similar to the deterministic variants. The theoretical
value for τ of the randomized gradient method is very large,
and, consequently, the algorithm shows slow convergence for
the latter choice of τ .

VI. CONCLUSION

We consider distributed optimization where N nodes min-
imize the sum of their convex costs fi’s by four distributed
augmented Lagrangian (AL) methods that differ in the primal
variable updates: 1) deterministic AL with Jacobi-type updates;
2) deterministic AL with gradient descent; 3) randomized AL
with nonlinear Gauss-Seidel-type; and 4) randomized AL with
gradient descent-type updates. With twice continuously dif-
ferentiable costs with bounded Hessian, we establish globally
linear (geometric) convergence rates for all methods and give
explicit dependence of the rates on the underlying network pa-
rameters. Simulation examples demonstrate linear convergence
of our methods.
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“Effect of small synchronization errors on stability of complex systems.
I,” Automation and Remote Control, vol. 44, no. 7.

[52] A. F. Kleptsyn, V. S. Kozyakin, M. A. Krasnoselśkii, and N. A. Kuznetsov,
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